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Dynamics of Infinitely Many Particles Mutually
Interacting in Three Dimensions via a Bounded
Superstable Long-Range Potential
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We show existence and uniqueness for the solutions to the Newton equations
relative to a system of infinitely many particles moving in the three-dimensional
space and mutually interacting via a bounded superstable long-range potential.
The present paper complete an analogous result obtained for positive short-
range interaction.
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1. INTRODUCTION

In the rigorous study of Non-Equilibrium Statistical Mechanics a first
problem that arises is to give a precise sense to the time evolution of states
of infinitely extended systems. In this paper we consider a physical sys-
tem composed by infinitely many particles mutually interacting in three
dimensions via a bounded superstable long-range potential. We want to
establish existence and uniqueness of the time evolution of the system gov-
erned by Eq. (1.1), which means essentially to show that a quasi-local
observable evolves remaining quasi-local. This paper extends the results of
a previous paper by Caglioti et al.,(2) who consider particles interacting
by means of a positive, bounded, finite-range potential. As it was claimed
in ref.2, the extension to superstable potentials seems quite natural and
the problems of such a generalization are essentially technical in nature.
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With the generalizations introduced in the present paper the more impor-
tant potentials which are not yet included in this kind of analysis are those
singular at the origin; they, although interesting from a physical point of
view, seem to be out of a possible approach with the present techniques
in three dimensions. An interaction which is singular at the origin in fact
could produce a too fast growth of the maximal velocity assumed by the
particles, which could diverge in a finite time. To confirm the difficulties
that appear in three dimensions, Fritz and Dobrushin(4) have exhibited
an example of a system of infinite particles with a hard-core potential,
which preserves energy in the collisions but it’s not hamiltonian, and it
produces a collapse in three-dimensions but not in two. In one dimen-
sion the first pioneer papers on this subject go back to Lanford(6,7) who
considered the case of bounded, short-range potentials, while the case of
singular interactions was first treated in ref. 3. In two dimensions Fritz
and Dobrushin solved the problem for finite-range potentials(4), whereas
Fritz(5) extended the previous results in two dimensions for superstable,
singular, finite-range potentials. The extension of this result for long-range
potentials is due to Bahn et al.(1)

Let us briefly describe the contents of the present paper. We are going
to consider the motion of a countable collection of identical particles of
unit mass in the three-dimensional Euclidean space R

3. A configuration of
the system is represented as an infinite sequence {qi, vi}i∈N of the positions
and velocities of the particles, and its time evolution is characterized by
the solutions of the Newton equations:

q̈i (t)=
∑

j∈N, j �=i
F (qi(t)−qj (t)), i ∈N, (1.1)

where F(x)=−∇φ(x). We assume that φ is a symmetric pair potential, su-
perstable, bounded, and of an infinite range, with a power-like decreasing
rate (see Section 2 for the details).

The first mathematical problem that arises is to establish existence
and uniqueness of the solutions of Eq. (1.1), which have to be comple-
mented by the initial conditions {qi(0), vi(0)}i∈N. We can exhibit initial
conditions that after a finite time produce a collapse of the system (i.e.
infinitely many particles in a bounded region), so we must choose them
in order to exclude these bad initial data, but taking into account all the
relevant states from a thermodynamical point of view.

We organize this paper as follows. In Section 2, we describe the class
of the interactions studied and we give the main results of the paper. In
Section 3, we give an a priori estimate of the energy of a region of the
space, whereas in Section 4, we give some dynamical estimates on the
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maximal velocity assumed by a single particle and on the work made by
the system on it. Finally, thanks to these preliminary results, in Section 5,
we prove the existence of the solutions of the Newton equations.

The Appendices are devoted to the proof of some technical results.

2. NOTATIONS, DEFINITIONS AND MAIN RESULTS

In this paper we study the dynamics of infinite particles moving in the
Euclidean space R

3. Let X= {qi, vi}i∈N be the infinite sequence of posi-
tions and velocities of the particles. We assume that X is a locally finite
configuration, that is in any compact set �⊂R

3 the number of the parti-
cles in the region �:

n�=
∑

i∈N

χ(qi ∈�) (2.1)

is finite. We denote by χ(A) the characteristic function of the set A, and
by B(µ,R) the open ball centered in µ and of radius R. The integer part
of the real number x is here denoted by [x].

For simplicity in the sequel we will denote by Di,Ei,Li, D̃i , Ẽi , L̃i
any positive constant, possibly depending on the interaction φ and on the
initial configuration X of the system.

Let us now define the class of superstable interactions, which we are
going to consider in this paper. Given a symmetric pair potential φ(x)≡
φ(|x|), x∈R

3, continuous with its first and second derivatives, we give the
following definition:

Definition 2.1 (Superstability). Let us divide the space R
3 into cubes

�α of side 1 and centered in α ∈ Z
3. Let n�α be the number of particles

in �α.
We say that the potential φ is superstable if there exist constants

A>0, B�0 for which ∀n and ∀q1, . . . , qn we have:

U(q1, . . . , qn)�−Bn+A
∑

α

n2
�α
, (2.2)

with

U(q1, . . . , qn)= 1
2

∑

i �=j
φ(|qi −qj |).



370 Cavallaro et al.

A superstable potential can be decomposed into the sum of a stable
potential plus a potential not negative, strictly positive at the origin.(8,9) In
spite of the presence of an attractive part, superstability avoids large con-
centrations of particles in small regions of space.

Here we consider the interaction due to a superstable, bounded, long-
range potential, with a power-like decreasing rate, for which there exist
positive constants γ, G1, G2, G3, r0, such that, for |x|>r0:

|φ(x) | � G1

|x|γ , (2.3)

|∇φ(x)| � G2

|x|γ+1
(2.4)

and

|∇φ(x)−∇φ(y)|� G3

(1+min(|x|, |y|))γ+2
|x−y|. (2.5)

In the sequel we assume γ >7. This technical assumption will be dis-
cussed at the end of this section.

In order to consider configurations which are typical from a thermo-
dynamical point of view, we must allow initial data with logarithmic diver-
gences in the velocities and in the local densities.

More precisely, we define, using the short-hand notation φi,j =φ(|qi−
qj |),

Q(X;µ,R)=
∑

i∈N

χ(|qi −µ|�R)
(v2

i

2
+ 1

2

∑

j :j �=i,
qj ∈B(µ,R)

φi,j +b
)
, b>B (2.6)

and

Qξ(X)= sup
µ

sup
R:R>ψξ (|µ|)

Q(X;µ,R)
R3

, (2.7)

where

ψξ (x)={log(max(x, e))}ξ , x ∈R
+. (2.8)

For each ξ � 1/3, the set of all configurations for which Qξ(X)<∞
constitutes a full measure set for all Gibbs states associated to the particle
system (see refs. 3 and 4).
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If the initial configuration X = {qi(0), vi(0)} ∈ Xξ , with Xξ = {X :
Qξ(X)<∞}, we will make sense of the infinite set of Newton equations:

q̈i (t)=Fi(X(t))=
∑

j �=i
Fi,j (t), (2.9)

where Fi,j = −∇φ(|qi − qj |) is the force exerted by the particle j on the
particle i.

The solutions to the Newton equations will be constructed by means
of a limiting procedure. Neglecting all the particles outside B(0, n), we
consider, for an integer n:

q̈ni (t) = Fni (t),

qni (0) = qi, vni (0)=vi, i ∈ In, (2.10)

where

In = {i ∈N :qi ∈B(0, n)},
F ni (t) =

∑

j :j �=i,
j∈In

F (qni (t)−qnj (t))

and

Xn(t)={qni (t), vni (t)}i∈In

is the time evolved finite configuration.
Even if in this paper we consider the more general case of long-range

potentials, it is useful to underline the differences that occur consider-
ing short-range and long-range potentials (in both cases of a superstable,
bounded type). For short-range potentials the following theorem holds.

Theorem 2.1. If X ∈ Xξ , there exists a unique flow t →X(t), with
X(t)={qi(t), vi(t)}i∈N ∈X 3

2 ξ
, satisfying:

q̈i (t)=Fi(X(t)), X(0)=X. (2.11)

Moreover, ∀t >0 and ∀i ∈N,

lim
n→+∞q

n
i (t)=qi(t), lim

n→+∞v
n
i (t)=vi(t). (2.12)
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Remark. In ref. 2 also initial data contained in Xξ evolve in X 3
2 ξ

(in
which ξ was taken equal to 1).

For long-range potentials the existence of the dynamics is defined
starting from conditions for which ξ is not too large: ξ <4/9 (this restric-
tion for ξ will be clear in Section 5, where it will be used to make the iter-
ative method work). In order to include states of physical interest we then
take ξ ∈ [1/3,4/9). The theorem in this case is the following.

Theorem 2.2. If X ∈ Xξ , there exists a unique flow t →X(t), with
X(t)={qi(t), vi(t)}i∈N ∈ X̃ξ , satisfying:

q̈i (t)=Fi(X(t)), X(0)=X, (2.13)

where

X̃ξ =X 3
2 ξ

∩ X̄ξ , (2.14)

and

X̄ξ ={qi, vi :∀i ∈N |vi |�Cψ3/2
ξ (|qi |)}, (2.15)

with C>0.
Moreover, ∀t >0 and ∀i ∈N,

lim
n→+∞q

n
i (t)=qi(t), lim

n→+∞v
n
i (t)=vi(t). (2.16)

Theorems 2.1 and 2.2 are the main results and their proofs occupy
the rest of the present paper. The proofs are based on several steps: we
introduce a mollified version of the local energy and we study its evolu-
tion in time under the partial dynamics. The energy conservation allows to
prove that the local energy grows in time at most as the cube of the max-
imal velocity of the particles. On the other hand a suitable time average
allows to control the maximal velocity via the local energy in a good way.
The result is achieved by letting n→ ∞. The philosophy of the proof is
similar to that of ref. 2. Actually in that paper the authors use many times
the positivity and the finite range of the interaction, while in the present
paper the interaction can be negative and with long-range behavior. This
fact requires a new mollifier and other cumbersome technical tools.

In the sequel we will need to split the potential into two terms: a
short-range one, φ(1), and a long-range one, φ(2).
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To do so, let us take, for r >max (r0,
√

3):

φ(x) = φ(1)(x)+φ(2)(x),
φ(1)(x) = φ(x)χ(|x|� r),
φ(2)(x) = φ(x)−φ(1)(x),

|φ(2)(x)| � G1

|x|γ .
(2.17)

The following proposition holds.

Proposition 2.1. Let φ as in (2.17). Then ∃r̄ > 0 such that, ∀r � r̄,
φ(1) is superstable.

Proof. From the superstability of φ we have

1
2

n∑

i=1

n∑

j=1,j �=i
φi,j = 1

2

n∑

i=1

n∑

j=1,j �=i

(
φ
(1)
i,j +φ(2)i,j

)
�−B n+A

∑

i∈Z3

n2
�i

⇒ 1
2

n∑

i=1

n∑

j=1,j �=i
φ
(1)
i,j �−1

2

	∑

i,j

G1

|qi −qj |γ −B n+A
∑

i∈Z3

n2
�i
, (2.18)

where
∑

	

i,j is the sum restricted to particles at distance greater than r. Let
us consider the first term on the right:

	∑

i,j

G1

|qi −qj |γ = G1

∞∑

k=1

∑

i �=j
χ(kr < |qi −qj |� (k+1)r)

1
|qi −qj |γ

� G1

∞∑

k=1

1
(rk)γ

∑

i �=j
χ(kr < |qi −qj |� (k+1)r)

�
∞∑

k=1

∑

l∈Z3,
m∈Z3

χ(kr−
√

3� |l−m|<(k+1)r+
√

3)
G1

(kr)γ
n�l n�m

�
∑

i∈Z3

n2
�i

∞∑

k=1

G1

(rk)γ

× Card{Z3 ∩ (B(0, (k+1)r+
√

3)\B(0, kr−
√

3))}

� D1

rγ−3

∞∑

k=1

1
kγ−2

∑

i∈Z3

n2
�i

� D2

rγ−3

∑

i∈Z3

n2
�i
, (2.19)
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when γ >3.
Inserting (2.19) in (2.18), we obtain:

1
2

n∑

i=1

n∑

j=1,j �=i
φ
(1)
i,j �

(
− D2

2 rγ−3
+A

) ∑

i∈Z3

n2
�i

−B n, (2.20)

then for

r� r̄=max

((
2D2

A

)1/(γ−3)

, r0,
√

3

)
(2.21)

we obtain the thesis:

1
2

n∑

i=1

n∑

j=1,j �=i
φ
(1)
i,j � 3

4
A
∑

i∈Z3

n2
�i

−B n. (2.22)

For a configuration X with finite cardinality, let us define a mollified
version of the energy (plus b times the number of particles, with b >B)
for the particles contained into the ball B(µ,R), by means of a suitable
weight-function:

W(X;µ,R)=
∑

i∈N

f
µ,R
i

(v2
i

2
+ 1

2

∑

j :j �=i
φi,j +b

)
(2.23)

with a weight-function

f
µ,R
i ≡f (qi −µ,R)≡

∫

R3
θ

( |qi −µ−y|
R

) (
1

1+α|y|
)λ
dy, (2.24)

where θ : R
+ → (0,1], is continuously differentiable and it is such that

1. θ(x)= (1+αx)−λ for x�2 ,

2. θ(x) is concave for x�2,

3. θ(x)= θ(2)− 1
2θ

′
(2), for x�1.
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Notice that

θ(x)� (1+αx)−λ (2.25)

and

|θ ′
(x)|�λα(1+αx)−(λ+1) (2.26)

with λ> 3 and α ∈ (0,1]. In the sequel we shall assume λ∈ (4, γ − 3) and
α small enough (for details see Appendix A).

Following,(1) let us show the main properties of the weight-function:

Proposition 2.2. There exist positive constants C1, C2, depending
only on α and λ, such that, for any R>1, the following properties hold

1. f (x,R)�C1(1+α|x|/R)−λ,

2. f (x,R)�C2(1+α |x|/R)−λ,

3. f (x,R)� (1+α|x−y|)λf (y,R).

Proof. 1. Let us prove the first property. Multiplying f (x,R) by
(1+α|x|/R)λ, using the triangular inequality we obtain:

(
1+α |x|

R

)λ
f (x,R) �

∫

R3
dy

(
R+α|y|+α|x−y|
R+α|x−y|

)λ 1

(1+α|y|)λ

�2λ
∫

R3
dy
(1+α|y|)λ+ (R+α|x−y|)λ

(R+α|x−y|)λ
1

(1+α|y|)λ ,

considering that ∀a, b∈R
+ it holds (a+b)λ�2λ (aλ+bλ). Then

(
1+α |x|

R

)λ
f (x,R) �2λ

∫

R3
dy

1

(1+α|y|)λ +2λ
∫

R3
dy

1

(R+α|y−x|)λ

� 2λ+1
∫

R3
dy

1

(1+α|y|)λ �C1

for R>1.



376 Cavallaro et al.

2. Notice first that:

θ

( |x−y|
R

)
� θ(2) 1

(1+α|x−y|/R)λ , (2.27)

being θ(2)= min
|x|�2

θ(x). So for the weight-function we have

f (x,R)� θ(2)
∫

R3
dy

1

(1+α|x−y|/R)λ
1

(1+α|y|)λ .

Multiplying f (x,R) by (1+α|x|/R)λ, we obtain:

(
1+α |x|

R

)λ
f (x,R) � θ(2)

2λ

∫

R3
dy

1

(1+α|y|)λ
(1+α|x|/R)λ

(1+α|y|/R)λ+(1+α|x|/R)λ

� θ(2)
2λ

∫

R3
dy

1

(1+α|y|)λ
1

1+
(

1+α|y|/R
1+α|x|/R

)λ

� θ(2)
2λ

∫

R3
dy

1

(1+α|y|)λ
1

1+ (1+α|y|/R)λ

� θ(2)
2λ

∫

R3
dy

1

(1+α|y|)λ
1

1+ (1+α|y|)λ �C2

for R>1.
3. For the third relation let us write the function f in the following way,
putting x−y= z:

f (x,R)=
∫

R3
θ

( |z|
R

) (
1

1+α|x− z|
)λ
dz.

Since

1
1+α|x− z| � 1+α|x−y|

1+α|y− z| ,

the thesis follows (last inequality becomes evident multiplying both sides
by (1+α|x− z|)(1+α|y− z|) and using the triangular inequality).

The choice of such a weight-function will be evident later, in the
proof of Lemma 3.1. This function, unlike the mollifier function used in
ref. 2, allows also to give some superstability estimates for the energy of a
bounded region of the space, essential in the proof of Lemma 3.2.
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Notice that, if the interaction has finite range, we could use an
explicit weight-function, i.e. f (x)= 1/ cosh(x). In general an exponential
decay for the weight-function is too fast for taking into account potentials
with a power-law decay.

We give now a short explanation for the technical assumption on
the power-law decay (γ > 7) of the interaction. The weight-function must
decay slower than the interaction (γ >3+λ) to handle the border terms of
the mollified energy (see (A.12)); moreover the weight-function must decay
fast enough (λ> 4, see (C.9)) to obtain the boundedness of the mollified
density energy Wξ(X) defined in (3.4).

3. PROPERTIES OF THE MOLLIFIED ENERGY

We present here a lemma, whose proof is shown in Appendix A, that
gives a superstability property of the mollified energy.

Lemma 3.1. There exist C3>0 and ᾱ∈ (0,1), not depending on R,
such that ∀α∈ (0, ᾱ):

W(X;µ,R)�C3

∑

k∈Z3

f (|k−µ|,R)n2
�k
. (3.1)

We actually prove a stronger condition:

W(X;µ,R) �
∑

i∈N

f
µ,R
i

(1
2

∑

j :j �=i
φi,j +b

)

� C3

∑

k∈Z3

f (|k−µ|,R)n2
�k

�0, (3.2)

which implies that the interaction energy is non-negative. In the sequel the
parameter α appearing in Lemma 3.1 will be considered fixed.

From Lemma 3.1 we can derive the following corollaries:

Corollary 3.1. There exist C3,C4 > 0, not depending on R, such
that:

C3

∑

k∈Z3

f (|k−µ|,R)n2
�k

�W(X;µ,R)� C4

∑

k∈Z3

f (|k−µ|,R)n2
�k

+
∑

i∈N

f
µ,R
i

v2
i

2
. (3.3)
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The first inequality reproduces Lemma 3.1, while the proof of the sec-
ond inequality will be given in Appendix B.

The functionW is a technical tool. The following Corollary (whose proof
is given in Appendix C) shows the relation with the initial data. Defining

Wξ(X)≡ sup
µ

sup
R>ψξ (|µ|)

W(X;µ,R)
R3

, (3.4)

then it holds:

Corollary 3.2. ∃ C5, C6>0, not depending on R, such that:

C5Qξ(X)�Wξ(X)�C6Qξ(X). (3.5)

We can give now an estimate for the mollified energy, useful for the
proof of the existence of the dynamics.

Lemma 3.2. For X ∈ Xξ , there exists a positive constant C7 such
that

sup
µ
W(Xn(t);µ,R(n, t))�C7R

3(n, t) , (3.6)

where

R(n, t)=ϕ(n)+
∫ t

0
ds V n(s) (3.7)

with

ϕ(n)=ψ3/2
ξ (n)

and

V n(s)=max
i∈In

{
sup

0�τ�s
|vni (τ )|

}
.

Proof. For 0� s� t�T let us define

R(n, t, s)=R(n, t)+
∫ t

s

V n(τ ) dτ . (3.8)

Notice that

Ṙ(n, t, s)≡ ∂R

∂s
(n, t, s)=−V n(s)�0,
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moreover

R(n, t, t)=R(n, t), R(n, t,0)<2R(n, t).

Let us derive with respect to s the quantity:

W(Xn(s);µ,R(n, t, s)) =
∑

i∈N

f
µ,R(n,t,s)
i




v2
i

2
+ 1

2

∑

j :j �=i,
j∈N

φi,j +b





=
∑

i∈N

f
µ,R(n,t,s)
i wi (3.9)

with

wi ≡
v2
i

2
+ 1

2

∑

j :j �=i
φi,j +b. (3.10)

We have:

∂W

∂ s
= Ẇ1 + Ẇ2, (3.11)

where

Ẇ1 ≡
∑

i

wi

∫

R3
dy θ

′
( |qi −µ−y|

R

)

× 1

(1+α|y|)λ
(

Vers(qi −y−µ) ·vi
R(n, t, s)

− Ṙ(n, t, s)

R2(n, t, s)
|qi −y−µ|

)
,

Ẇ2 ≡
∑

i �=j
f
µ,R(n,t,s)
i

(
vi ·Fi,j − 1

2
Fi,j · (vi −vj )

)
. (3.12)

We have denoted by Vers (x) the versor of the vector x ∈ R
3. Let us

consider now the first term Ẇ1. Thanks to (2.26) and to the definition of
V n, we have:

|Ẇ1|� λ

∣∣∣∣
Ṙ

R

∣∣∣∣ α
∑

i

|wi |
∫

R3
dy

1

(1+α|qi −µ−y|/R)λ+1

× 1

(1+α|y|)λ
(

1+ |qi −y−µ|
R(n, t, s)

)
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� D3

∣∣∣∣
Ṙ

R

∣∣∣∣
∑

i

|wi |
∫

R3
dy

1

(1+α|qi −µ−y|/R)λ
1

(1+α|y|)λ

� D4

∣∣∣∣
Ṙ

R

∣∣∣∣
∑

i

f
µ,R(n,t,s)
i |wi |, (3.13)

where in the last inequality we have applied (2.27). From the positivity of
the mollified energy and from estimates analogous to those used to obtain
(B.1) we have:

|Ẇ1|�D5

∣∣∣
Ṙ

R

∣∣∣



W(X;µ,R)+
∑

i∈Z3

n2
�i
f (|i−µ|,R)



 (3.14)

and from Lemma 3.1 we obtain:

|Ẇ1|�D6

∣∣∣
Ṙ

R

∣∣∣W(x;µ,R). (3.15)

For the second term Ẇ2 we are going to give also an estimate of the
form:

Ẇ2 �D11

∣∣∣
Ṙ

R

∣∣∣W(X;µ,R). (3.16)

Let us evaluate

Ẇ2 =
∑

i �=j
f
µ,R(n,t,s)
i

(
vi ·Fi,j − 1

2
Fi,j · (vi −vj )

)

= 1
2

∑

i �=j
f
µ,R(n,t,s)
i Fi,j (vi +vj ). (3.17)

Since Fi,j =−Fj,i , it results:

Ẇ2 = 1
2

∑

i �=j
f
µ,R(n,t,s)
i Fi,j · (vi +vj )

= 1
2

∑

i �=j
f
µ,R(n,t,s)
i Fi,j ·vi − 1

2

∑

i �=j
f
µ,R(n,t,s)
j Fi,j ·vi

= −1
2

∑

i �=j
(f

µ,R(n,t,s)
i −f µ,R(n,t,s)j )∇φi,j ·vi(s). (3.18)
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Let us estimate now the addends of the sum one by one. From the prop-
erties of θ(x) (2.26), (2.27) and of the potential we have:

|f µ,R(n,t,s)i −f µ,R(n,t,s)j |�D7
|qi −qj |
R(n, t, s)

(f
µ,R(n,t,s)
i +f µ,R(n,t,s)j ). (3.19)

Being

|∇φ(|qi −qj |)|�D8
(
1+|qi −qj |

)−γ−1
, (3.20)

then, using an estimate analogous to (B.1):

|Ẇ2| � D9

∣∣∣
Ṙ

R

∣∣∣
∑

i∈N

∑

j∈N:
i �=j

(f
µ,R(n,t,s)
i +f µ,R(n,t,s)j )

1(
1+|qi −qj |

)γ

� D10

∣∣∣
Ṙ

R

∣∣∣
∑

i∈Z3

f (|i−µ|,R)n2
�i
. (3.21)

Using Lemma 3.1 we close the estimate with the function W :

|Ẇ2|�D11

∣∣∣
Ṙ(n, t, s)

R(n, t, s)

∣∣∣W(Xn(s);µ,R(n, t, s)). (3.22)

We have so proved that

∣∣∣∣
∂W(Xn(s);µ,R(n, t, s))

∂s

∣∣∣∣�D12

∣∣∣
Ṙ(n, t, s)

R(n, t, s)

∣∣∣W(Xn(s);µ,R(n, t, s)).
(3.23)

Integrating we have

W(Xn(s);µ,R(n, t, s))� W (Xn(0);µ,R(n, t,0))
+ D12

∫ s

0
dτ

∣∣∣
Ṙ(n, t, τ )

R(n, t, τ )

∣∣∣W(Xn(τ);µ,R(n, t, τ )).

Let us use now the Gronwall’s lemma to handle the previous inequality

W(Xn(s);µ,R(n, t, s))�W(Xn(0);µ,R(n, t,0))
(
R(n, t,0)
R(n, t, s)

)D12

,

(3.24)
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from which, being R(n,t,0)
R(n,t,s)

�2, we obtain

W(Xn(s);µ,R(n, t, s))�2D12 W(Xn(0);µ,R(n, t,0)), (3.25)

and since R(n, t, t)=R(n, t), taking the supremum over µ, we have

sup
µ
W(Xn(t);µ,R(n, t))�D13 sup

µ
W(Xn(0);µ,R(n, t,0)). (3.26)

From Corollary 3.2 and by the hypothesis on the initial data, being
R(n, t,0)>ψξ (n), we get

sup
µ
W(Xn(0);µ,R(n, t,0))�C6Qξ(X)R

3(n, t,0), (3.27)

thus

sup
µ
W(Xn(t);µ,R(n, t))�D14R

3(n, t).

In Lemma 3.3 we present some relations that will be used in the sequel.
The proof is in Appendix D.

Lemma 3.3. Let X be a configuration with finite cardinality. Then,
for any R>1 there exist positive constants C8, C9, C10, C11 such that

(i) if n∈N, n>1

W(X;µ,nR)�C8 n
λW(X;µ,R); (3.28)

(ii) if n∈N, n>1

W(X;µ,R)�C9W(X;µ,nR); (3.29)

(iii) N(X,µ,R)≡
∑

i

χ(|qi −µ|<R)�C10R
3/2W(X;µ,R)1/2; (3.30)

(iv) for 0<ρ<R

∑

i �=j
χ(|qi −qj |<ρ)χ(|qi −µ|<R)χ(|qj −µ|<R)�C11 ρ

3W(X;µ,R).

(3.31)
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We will need an estimate for the force Fi that at time t acts on the
particle i:

Fi(X
n(t))≡−

∑

j∈In
∇φ(|qi(t)−qj (t)|). (3.32)

We can make the following decomposition:

|Fi(Xn(t))|�F (1)i +F (2)i ,

where F (1)i represents a bound for the absolute value of the force acting
on the particle i, due to the particles j contained in B(qi(t), r), with r not
less than r̄, defined in Proposition 2.1, and F

(2)
i is a bound for the abso-

lute value of the force acting on the particle i, due to the particles j con-
tained in Bc(qi(t), r).

Using the third property of Lemma 3.3, the first term is bounded by:

F
(1)
i � ‖F‖∞N(Xn(t), qi(t), r)�‖F‖∞C10 r

3/2W(Xn(t);qi(t), r)1/2
� ‖F‖∞D15 r

3/2 sup
µ
W(Xn(t);µ,R(n, t))1/2 �D16 R

3/2(n, t),

where, for sufficiently large n, we have used Lemma 3.2.
Let us give now a bound for the second term; for R=R(n, t)� r we

have

F
(2)
i � G2

∑

j :|qi−qj |>r

1

|qi −qj |γ+1

� G2

[R/r]+1∑

k=1

∑

j

χ(kr < |qi −qj |� (k+1)r)
1

(kr)γ+1

+ G2

+∞∑

k=1

∑

j

χ(kR< |qi −qj |� (k+1)R)
1

(kR)γ+1

� G2

[R/r]+1∑

k=1

N(X,qi, (k+1)r))
1

(rk)γ+1

+ G2

∞∑

k=1

N(X,qi, (k+1)R))
1

(kR)γ+1
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� D17

[R/r]+1∑

k=1

((k+1)r)3/2W 1/2(X, qi, (k+1)r)
1

(rk)γ+1

+ D17

∞∑

k=1

((k+1)R)3/2W 1/2(X, qi, (k+1)R)
1

(Rk)γ+1

� D18

(
R3/2 +R3/2−γ−1 sup

µ
W 1/2(X,µ,R)

∞∑

k=1

kλ/2
1

kγ+1−3/2

)

� D19

(
R3/2 +R3−γ−1

+∞∑

k=1

1
kγ−λ/2−1/2

)
, (3.33)

where in the penultimate line we have used the first property of Lemma 3.3.
Since γ >3+λ we obtain:

F
(2)
i �D20R

3/2(n, t). (3.34)

Then

|Fi(Xn(t))|�D21R
3/2(n, t). (3.35)

In the proof of Proposition 4.1 we will need an estimate for the force,
|F̄i |, due to the particles j at distance larger than R(n, t)1/4 from the par-
ticle i:

|F̄i | � G2

∑

j :|qi−qj |>R1/4

1

|qi −qj |γ+1

� G2

+∞∑

k=1

∑

j

χ(kR1/4 � |qi −qj |<(k+1)R1/4)
1

(kR1/4)
γ+1

� G2

∞∑

k=1

N(X,qi, (k+1)R1/4))
1

(kR1/4)
γ+1

� D22

∞∑

k=1

((k+1)R1/4)3/2W 1/2(X, qi, (k+1)R)
1

(kR1/4)
γ+1

� D23R
3/8−(γ+1)/4 sup

µ
W 1/2(X,µ,R)

∞∑

k=1

kλ/2
1

kγ+1−3/2

� D24R
3/8+3/2−(γ+1)/4

+∞∑

k=1

1
kγ−λ/2−1/2

. (3.36)
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4. DYNAMICAL ESTIMATES

The following two propositions give bounds on the maximal velocity of a
particle and on the work done by the system over a single particle.

In this section, we shall omit any explicit notational dependence on n
for R(n, t) and {qni (t), vni (t)} for simplicity, since, from now on, n will be
fixed.

Proposition 4.1. For any positive T <+∞, there exists a positive
constant C12 such that, for t�T ,

V n(t)�C12R(t), (4.1)

where

R(t)=ϕ(n)+
∫ t

0
V n(s) ds, (4.2)

and

ϕ(n)=ψ3/2
ξ (n). (4.3)

Proposition 4.2. For 0� s� t�T and any ζ ∈ [1/2,1], we set:

�= ζ R(t)−4/6. (4.4)

Suppose that, for some i ∈ In and some suitable constant Ā>1:

inf
τ∈[s−�,s]

|vi(τ ) |= ĀR(t). (4.5)

Then there exists a constant C13 independent of Ā such that:

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j

vj ·Fi,j

∣∣∣∣∣∣
�C13�R(t)

2 (4.6)

Using Proposition 4.2 we are able to prove Proposition 4.1.

Proof of Proposition 4.1. The proof will be achieved by contradic-
tion. We first notice that, by the initial conditions, V n(0)�Qξ(X)

1/2ϕ(n)=
Qξ(X)

1/2R(0) and then (4.1) is verified for t=0.
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Suppose that, for some t	 ∈ [0, t ] and i ∈ In we have:

V n(t	)=|vi(t	)|= ÃR(t) (4.7)

for a suitable constant Ã to be fixed later and satisfying Ã>2(Qξ (X)
1/2 +

1). We also fix t1 ∈ [0, t	), such that

|vi(t1)| = (Qξ (X)
1/2 +1)R(t), (4.8)

inf
τ∈(t1,t	)

|vi(τ )| � (Qξ (X)
1/2 +1)R(t) (4.9)

and |t	− t1|=H� for some integer H �1 and a suitable choice of ζ . This
can be done because by

v1(t
	)=vi(t1)+

∫ t	

t1

Fi(X
n(τ)) dτ (4.10)

and by (3.35), we find

ÃR(t)� (Qξ (X)
1/2 +1)R(t)+D21(t

	− t1)R(t)3/2 (4.11)

and hence

(t	− t1)�E1R(t)
−1/2 �R(t)−4/6, (4.12)

therefore, for a suitable choice of ζ ∈ [1/2,1], R(t)4/6|t	−t1|
ζ

is integer.
Furthermore, defining the set

Ȳn={j ∈ In : |qi(τ )−qj (τ )|�R(t)1/4 for some τ ∈ [t1, t
∗]}, (4.13)

we have

1
2
v2
i (t

	)− 1
2
v2
i (t1) =

∫ t	

t1

ds
∑

j

vi ·Fi,j

= L1 +L2, (4.14)

where

L1 ≡
∫ t	

t1

ds
∑

j∈Ȳ cn
vi ·Fi,j and L2 ≡

∫ t	

t1

ds
∑

j∈Ȳn
vi ·Fi,j . (4.15)
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For L1 we have:

|L1| � max
s∈[t1,t∗]

( ∑

j∈Ȳ cn
|Fi,j (s)|

)∫ t	

t1

ds |vi(s)|�E2R(t)
23
8 − γ+1

4 (4.16)

where the time integral is bounded by R(t) (see (3.7)), and for the sum of
the force we have used (3.36). Equation (4.16) clearly gives |L1|�E3R(t)

2.
Let us consider the second term L2:

L2 =
∫ t	

t1

ds
∑

j∈Ȳn
(vi −vj ) ·Fi,j +

H∑

h=1

∫ t1+h�

t1+(h−1)�
ds

∑

j∈Ȳn
vj ·Fi,j

= −
∑

j∈ Ȳn

φ(qi(t
	)−qj (t	))+

∑

j∈Ȳn
φ(qi(t1)−qj (t1))

+
H∑

h=1

∫ t1+h�

t1+(h−1)�
ds

∑

j∈Ȳn
vj ·Fi,j (4.17)

and, following a similar method to that used to obtain (3.35), we get
∣∣∣∣∣∣

∑

j∈Ȳn
φ(qi(t

	)−qj (t	))
∣∣∣∣∣∣
�E4R(t)

3/2. (4.18)

The same bound holds for
∑
j φ((qi(t1)−qj (t1)). Thus, using Propo-

sition 4.2 to control the last term of (4.17), we have:

1
2
v2
i (t

	)� (Qξ (X)+1+E3)R(t)
2 +2E4R(t)

3/2 +C13R(t)
2 |t	− t1|, (4.19)

hence

Ã2R(t)2 �2
(
Qξ(X)+1+E3 +2E4 +C13T

)
R(t)2. (4.20)

The above inequality can’t be satisfied for any Ã2 larger than 2(Qξ (X)+
1+E3 +2E4 +C13T ). This clearly contradicts (4.7) (for this choice of Ã),
therefore the proposition is proved.

Proof of Proposition 4.2. Let us set

J = [s−�, s], (4.21)

Yn={j ∈ In : |qi(τ )−qj (τ )|�R(t)1/4 for some τ ∈J }. (4.22)
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The particles belonging to Y cn can be easily handled: as shown in
(4.16) we have

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈Y cn
vj ·Fi,j

∣∣∣∣∣∣
�E2R(t)

23
8 − γ+1

4 �E5R(t)
2�, (4.23)

being γ >7. Hence from now on we consider only the particles j ∈Yn. Let
us split the set Yn according to the following partition:

ak ={j ∈Yn : 2k−1R(t)4/6 � sup
τ∈J

|vj (τ )|<2k R(t)4/6, k=1, . . . , kmax},
(4.24)

where kmax is the maximum integer for which

2kmax � 1
2R(t)

2/6, (4.25)

a0 ={j ∈Yn : supτ∈J |vj (τ )|<R(t)4/6}, (4.26)

ã=
kmax⋃
k=1

ak, (4.27)

ā=Yn \ (a0 ∪ ã). (4.28)

Therefore

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈Yn
vj ·Fi,j

∣∣∣∣∣∣
=
∣∣∣∣∣∣

∫ s

s−�
dτ





∑

j∈ā
+
∑

j∈ã
+
∑

j∈a0




 vj ·Fi,j

∣∣∣∣∣∣
(4.29)

and we give below a bound for each term of the previous equality.
First of all we give an upper bound for the cardinality of ā. If j ∈ ā

|vj (t∗)|=max
τ∈J

|vj (τ )|� 1
4
R(t), (4.30)

then by (3.35),

|vj (τ )|� 1
4
R(t)−D21�R(t)

3/2 � 1
4
R(t)−D21R(t)

5/6 � 1
8
R(t), (4.31)

for n (and so for R(t)) large enough.
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By definition R(t) is larger than the maximal displacement that a par-
ticle can undergo during the time interval [0, t ], then all the particles with
indices in Yn must be contained into the ball B(qi(0),3R(t)). Thus it fol-
lows from (C.1), (3.28) and (3.6) that

∑

j∈ā
v2
j (τ ) � 2Q(Xn(τ);qi(0),3R(t))�2L̃W(Xn(τ);qi(0),3R(t))

� 2C83λ L̃W(Xn(τ);qi(0),R(t))�2C8 3λL̃C7R(t)
3, (4.32)

then, by (4.31):

1
64

|ā|R(t)2 �E6R(t)
3, (4.33)

which implies

|ā|�64E6R(t). (4.34)

As a consequence, we have

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈ā
vj ·Fi,j

∣∣∣∣∣∣
� ‖F‖∞

∫ s

s−�
dτ

(∑

j∈ā
|vj |2

)1/2

|ā|1/2

� E7R(t)
3/2R(t)1/2�=E7R(t)

2�. (4.35)

Let us consider now the contribution of the set ã. Let l ∈ N with
1� l� lmax and lmax = [

R(t)1/4
]
. In this way, using the decreasing property

(2.4), we get:

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈ak
vj ·Fi,j

∣∣∣∣∣∣

�E8R(t)
4/6 2k

∑

j∈ak

{ lmax∑

l=1

1
lγ+1

∫ s

s−�
dτ χ

(l)
i,j (τ )

+ 1
[
R(t)1/4

](γ+1)

∫ s

s−�
dτ χ

(
|qi(τ )−qj (τ )|>

[
R(t)1/4

])}
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�E8R(t)
4/6 2k

∑

j∈ak

{
lmax∑

l=1

1
lγ

∫ s

s−�
dτ χ

(l)
i,j (τ )

+ 1[
R(t)1/4

]γ
∫ s

s−�
dτ χ

(
|qi(τ )−qj (τ )|>

[
R(t)1/4

])
}
, (4.36)

where

χ
(l)
i,j (τ )=χ(|qi(τ )−qj (τ )|� l).

Now we want to study the time integral
∫ s
s−� dτ χ

(l)
i,j (τ ), with 1� l� lmax.

In order to estimate this integral, we notice that for n sufficiently large:

|vi(τ )−vj (τ )| � inf
τ∈J

|vi(τ )|− sup
τ∈J

|vj (τ )|

� R(t)−2kmax R(t)4/6 � 1
2
R(t). (4.37)

Suppose that |qi(t0)− qj (t0)| = l at time t0 ∈ [s−�, s], with outgoing
velocities (i.e. (vi(t0)− vj (t0)) · (qi(t0)− qj (t0))� 0). Then we are going to
prove that the pair (i, j), once reached a relative distance larger than l,
it will never reach a distance smaller than l. Let t1 ∈ (s−�, s) denote the
time in which (qi(τ )−qj (τ ))2 reaches its maximum value, say r2

1 (for this
reason (vi(t1)−vj (t1)) · (qi(t1)−qj (t1))=0).

By the identity

1
2
d2

dτ 2
(qi(τ )−qj (τ ))2 = (vi(τ )−vj (τ ))2

+(qi(τ )−qj (τ )) · (Fi(τ )−Fj (τ)),

and using (4.37), (3.35) we get:

(qi(τ )−qj (τ ))2 � r2
1 + (τ − t1)2

2

(
R(t)2

4
−D21 r1R(t)

3/2

)
, (4.38)

for τ > t1. By the definition of r1 it follows that r1 �R(t)1/2/(4D21), oth-
erwise (qi(τ )−qj (τ ))2>r2

1 . In this case

(τ − t1)2
2

r1R(t)
3/2 � �2

2
r1R(t)

3/2 � ζ 2

2
r1R(t)

1/6 �E9r1
4/3. (4.39)
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Therefore

(qi(τ )−qj (τ ))2 � r2
1 −E9r1

4/3 � l2, (4.40)

then the pair (i, j) will keep a relative distance larger than l in the time
interval (t0, s) (note that the last inequality clearly holds because lmax =[
R(t)1/4

]�R(t)1/2).
Now we repeat this argument when r1 is the minimum distance

between particles i and j ; we again denote by t1 the time in which this
distance is reached. Supposing r1<l, we want to establish the exit time of
the particle j from the ball B(qi(τ ), l); this time can be derived from the
equation (qi(τ )−qj (τ ))2 = l2, hence (4.38) implies

l2 � r2
1 +E10

(τ − t1)2
2

R(t)2

4
,

(τ − t1)2 �
8(l2 − r2

1 )

E10R(t)
2

� 8l2

E10R(t)
2

⇒ |τ − t1|� E11 l

R(t)
.

Thus
∫ s

s−�
χ
(l)
i,j (τ )�

E12 l

R(t)
. (4.41)

In order to estimate the cardinality of ak, we use again an upper bound of
the energy as we have done for the set ā. Let be τj ∈J such that |vj (τj )|=
max
τ∈J

|vj (τ )|. Thus

|ak|22(k−1) R8/6 �
∑

j∈ak
|vj (τj )|2 �

∑

j∈ak
|vj (s−�)|2

+
∫ s

s−�
dτ

∑

j∈ak
|vj (τ )|

∑

p

|Fp,j (τ )|. (4.42)

Multiplying (4.42) by 2−k and summing over k, we have

∑

k

1
2
|ak|2(k−1) R8/6 �

∑

k

2−k ∑

j∈ak
|vj (s−�)|2

+E13R
4/6

∫ s

s−�
dτ

∑

j∈ã

∑

p

|Fp,j (τ )|. (4.43)
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The latter term can be bounded as follows:

∑

p

|Fp,j (τ )|�E14

∑

p

∞∑

l=1

1
lγ
χ
(l)
p,j (τ ). (4.44)

By means of (3.31) and (3.6), taking the supremum over µ, we can state

∑

j∈ã

∑

p

χ
(l)
j,p(τ )�E15 l

3R(t)3, (4.45)

and by (4.32) it follows that

∑

k

2−k ∑

j∈ak
|vj (s−�)|2 �E16R(t)

3, (4.46)

hence, combining these two relations and using the definition (4.4) of �,
we get

∑

k

|ak|2k �E17R(t)
14/6�. (4.47)

It follows from (4.36), (4.41) and (4.47) that

∑

k

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈ak
vj ·Fi,j

∣∣∣∣∣∣
�E18R(t)

2�, (4.48)

since the sum over k of the second term of (4.36) can be easily bounded
by:

R(t)4/6
∑

k

2k
∑

j∈ak

1[
R(t)1/4

]γ
∫ s

s−�
dτ � E19R(t)

4/6R(t)14/6�2R(t)−γ /4

� E19�R(t)
2. (4.49)

It remains to estimate the last contribution, namely that associated to
the set of indices a0. We have

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈a0

vj ·Fi,j

∣∣∣∣∣∣
�E20

H−1∑

h=0

R(t)4/6
∫ sh+1

sh

dτ

kmax∑

k=1

1
(kr)γ

N(k)(τ )

(4.50)
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with

N(k)(τ )=
∑

j∈a0

χ( |qi(τ )−qj (τ )|<kr )

and where J = [s−�, s] has been decomposed into H identical intervals:

J =
H−1⋃

h=0

[sh, sh+1] (4.51)

with sH = s, s0 = s−�, and |sh+1 − sh|= δ∈ [
1

2ĀR(t)
,

1

ĀR(t)
].

Moreover kmax is such that

kmax =
[
R(t)1/4/r

]
+1, (4.52)

(such a choice for the maximum value of k will be clear later).
Since |vj (τ )|�R(t)4/6, the maximal displacement of a particle belong-

ing to the set a0 is less than 1, in the time interval J . Moreover, defining

N
(k)
h =

∑

j∈a0

χ( inf
τ∈(sh,sh+1)

|qi(τ )−qj (s0)|<kr+1) (4.53)

for τ ∈ (sh, sh+1), we get N(k)(τ )�N(k)
h .

Then for (4.50) we have:
∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈a0

vj ·Fi,j

∣∣∣∣∣∣
� E20R(t)

4/6 δ

kmax∑

k=1

1
(kr)γ

H−1∑

h=0

N
(k)
h

� E20R(t)
4/6

√
H δ

kmax∑

k=1

1
(kr)γ

(
H−1∑

h=0

(
N
(k)
h

)2
)1/2

.

(4.54)

Let us define

T k
h ={y ∈R

3 : inf
τ∈(sh,sh+1)

|qi(τ )−y|<kr+1} (4.55)

and

E(T k
h )=

∑

l<j

φ(ql(s0)−qj (s0))+bN(Xn(s0),T k
h ), (4.56)
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where the sum is restricted to the pairs of particles in T k
h and E is a pos-

itive quantity because b>B. Let us note that N(Xn(s0),T k
h )�N

(k)
h .

We want to estimate now the sum in (4.54)

H−1∑

h=0

(
N
(k)
h

)2
. (4.57)

If the sets T k
h were all disjoint, then, defining

T k =
⋃

h

T k
h , (4.58)

by superstability we would simply have

E(T k)�A
∑

i∈Z3∩T k

n2
�i

�A
∑

h

∑

i∈Z3∩T k
h

n2
�i

�E21

H−1∑

h=0

(
N
(k)
h

)2

|T k
h | . (4.59)

We anticipate two results that will be proved afterwards: the first
regarding |T k

h |

|T k
h |�E22 k

3, (4.60)

the other dealing with the fact that a set T k
h has a non empty intersection

with no more than (8+4rk) other sets (we consider k fixed).

In this way (4.59) becomes

E(T k)� E23

k4

H−1∑

h=0

(
N
(k)
h

)2
. (4.61)

Putting the previous relation into (4.54), we can write

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈a0

vj ·Fi,j

∣∣∣∣∣∣
�E24R(t)

4/6
√
H δ

kmax∑

k=1

1

(k)γ−2
E(T k)

1/2
. (4.62)
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By the bound on the maximal velocity of the ith particle

|vi(τ )|� ĀR(t)+D21R(t)
3/2�� 3

2
ĀR(t), (4.63)

we get

T k ⊂B(qi(τ ),2+kr+R(t)1/3) (4.64)

with τ belonging to the interval [s−�, s] (for the proof see below).

Therefore

E(T k) �
∑

l<j :
ql ,qj ∈T k

|φ(ql(s0)−qj (s0))|+bN(Xn(s0),T k)

�
∑

l<j :
ql ,qj ∈B

|φl,j |+bN(B)�E25 sup
µ

∑

l

f
µ,R
l




∑

j

|φl,j |+b




� E26 sup
µ
W(Xn(s0);µ,R(s0))�E27R(t)

3, (4.65)

where in the fourth inequality we have used an estimate like the one given
in (B.1) and Lemma 3.1, while in the last inequality we have used Lemma
3.2. Putting the last relation into (4.62) we get:

∣∣∣∣∣∣

∫ s

s−�
dτ

∑

j∈a0

vj ·Fi,j

∣∣∣∣∣∣
�E28�R(t)

2, (4.66)

since
√
H = (�/δ)1/2 �

√
2ζ ĀR1/6.

It remains to prove that a fixed set T k
h has a non empty intersec-

tion with no more than (8+4rk) other sets, that |T k
h |�E22 k

3, and (4.64)
(we will see that these three statements are consequences of the inclusion
(4.69)). For a given h, let e= vi (sh+1)

|vi (sh+1)| and ξ(τ )= (qi(τ )−qi(sh+1)) ·e. Then

ξ(τ )=|vi(sh+1)| (τ − sh+1)+
∫ τ

sh+1

dσ (τ −σ)Fi(σ ) · e, (4.67)
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hence

|ξ(τ )| � |vi(sh+1)| (τ − sh+1)− |τ − sh+1|2
2

D21R(t)
3/2

� |τ − sh+1| (ĀR(t)−D21R(t)
3/2R(t)−4/6)

� |τ − sh+1| ĀR(t)2
(4.68)

for n large enough. On the other hand from (4.63) it follows that

T k
h ⊂B(qi(sh+1); 3

2
ĀR(t)δ+kr)⊂B(qi(sh+1);2+kr). (4.69)

Let us choose |τ − sh+1|>(8+4rk)δ, with (8+4rk)δ�� (such a con-
dition guarantees us to remain in [s −�, s]), that is k � kmax �R(t)1/3;
from this last condition, the choice (4.52) previously done of taking kmax ∼

R(t)1/4 is clear. Now, from (4.68), we have that |ξ(τ )|> 2 + kr, and for
this reason, after the time τ , qi will not enter anymore into the ball
B(qi(sh+1);2+kr), in such a way that T k

h will have a non empty intersec-
tion with no more than (8+4rk) other different T k

y ’s.
The bound on |T k

h | and the inclusion (4.64) are straightforward con-
sequences of (4.69).

We have now all the results necessary to prove the main theorem of
this work.

5. PROOF OF THEOREM 2.2

Let us define the quantity

δi(n, t)=
∣∣∣qni (t)−qn−1

i (t)

∣∣∣ . (5.1)

From the equations of motion in integral form we have:

qni (t)=qi(0)+vi(0) t+
∫ t

0
ds(t− s)

∑

j :j �=i
F
(
qni (s)−qnj (s)

)
. (5.2)

From (5.1) and (5.2) it follows that, for any i ∈ In−1,

δi(n, t)�
∫ t

0
ds(t− s)

∣∣∣∣
∑

j :j �=i

{
∇φ(qni (s)−qnj (s))−∇φ(qn−1

i (s)−qn−1
j (s))

} ∣∣∣∣

(5.3)
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and, because of the long-range of the interaction, it is useful to split up
the last sum in the following way. Let

min
{∣∣∣qn−1

i (s)−qn−1
j (s)

∣∣∣ ,
∣∣∣qni (s)−qnj (s)

∣∣∣
}

=mnij (s) (5.4)

and, fixing a particle i, consider the following sets of indices:

An
i (s, k) =

{
j �= i : (k−1)ϕ(n)�mnij (s)�kϕ(n)

}
,

Ãn
i (s) =

{
j �= i :mnij (s)�kmaxϕ(n)

}

where ϕ(n) = ψξ (n)
3/2 (ψξ has been defined in (2.8)), k = 1,2, . . . , kmax

and kmax = [
n3/4/ϕ(n)

]
. We can write, using the property (2.5) of the

interaction:
∣∣∣∣∣∣

∑

j :j �=i

{
∇φ(qni (s)−qnj (s))−∇φ(qn−1

i (s)−qn−1
j (s))

}
∣∣∣∣∣∣

�L1

∑

j∈An
i (s,1)

(
δi(n, s)+ δj (n, s)

)

+L1

kmax∑

k=2

1
(
(k−1)ϕ(n)

)γ+2

∑

j∈An
i (s,k)

(
δi(n, s)+ δj (n, s)

)

+L1
1

(
kmaxϕ(n)

)γ+2

∑

j∈Ãn
i (s)

∣∣∣qni (s)−qnj (s)−qn−1
i (s)+qn−1

j (s)

∣∣∣ .

(5.5)

Defining

dn(t)= sup
s∈[0,t ]

sup
i∈In

∣∣qni (s)−qi(0)
∣∣ , (5.6)

from the bound

V n(t)�L2ϕ(n), (5.7)

(it is a consequence of (4.1), (4.2) and of Gronwall’s lemma) we get, for
t�T : dn(t)�L3ϕ(n), where L3 =L2T .
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Hence, putting

p(k)(n, t)=kϕ(n)+L3ϕ(n), (5.8)

the number of particles contained in An
i (s, k) is bounded by the number

of particles that, at the initial time, were in a ball of radius p(k)(n, t), and
therefore, according to the definition (2.7), it is bounded by the quantity:

g(k)(n, t)=Qξ(X)
(
p(k)(n, t)

)3
�L4k

3ϕ(n)3. (5.9)

For the same reason, the number of particles belonging to Ãn
i (s) is

bounded by L5Qξ(X)n
3, so the last term in (5.5) is bounded by

L5
Qξ(X)n

4

(
n3/4

)γ+2
. (5.10)

We define

uk(n, t)= sup
i∈Ik

δi(n, t) (5.11)

and we fix an integer k0 �n. Putting

k1 =
[
k0 +p(kmax)(n, t)

]
, (5.12)

we can bound the r.h.s. of (5.5) in the following way (using (5.8), (5.9),
(5.10)):

(5.5)�L1

(
L4ϕ(n)

3 +
∑

k�2

L4 k
3ϕ(n)3

(
(k−1)ϕ(n)

)γ+2

)
uk1(n, s)+

L5Qξ(X)n
4

(
n3/4

)γ+2
.

(5.13)

Hence by (5.3), (5.13), we get:

uk0(n, t)�L6ϕ(n)
3
∫ t

0
ds (t− s) uk1(n, s)+

L7

n(3/4)γ−5/2
. (5.14)
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We iterate now (5.14) m times, where m is

m=
[

n−k0

p(kmax)(n, t)

]
. (5.15)

hence um(n, t)�L3ϕ(n), we have

uk0(n, t) � (L8ϕ(n))
3m+1 t2m

(2m)!
+ L7

n(3/4)γ−5/2

m∑

h=1

(
ϕ(n)3

)h
t2h

(2h)!

� (L8ϕ(n))
3m+1 t2m

(2m)!
+ L7

n(3/4)γ−5/2
exp

(
ϕ(n)3/2t

)
. (5.16)

By the choice (5.15), using Stirling formula, since ϕ(n)3/2 < L9
(log n)(9/4)ξ , where ξ < 4/9, and since γ > 7, it follows that uk0(n, t) con-
verges summably to zero as n→∞.

For what concernes the velocities we have:

∣∣∣vni (t)−vn−1
i (t)

∣∣∣�
∫ t

0
ds

∣∣∣∣
∑

j :j �=i
F
(
qni (s)−qnj (s)

)
−F

(
qn−1
i (s)−qn−1

j (s)
) ∣∣∣∣

(5.17)

and we can bound the right hand side of (5.17) by the same estimates used
to bound (5.5). In this way recalling (5.14) we obtain, for any i ∈ Ik0 :

∣∣∣vni (t)−vn−1
i (t)

∣∣∣�L6ϕ(n)
3
∫ t

0
ds uk1(n, s)+

L7

n(3/4)γ−5/2
, (5.18)

where for uk1(n, s) it holds (5.16) replacing m with m−1:

uk1(n, t)� (L8ϕ(n))
3(m−1)+1 t2(m−1)

(2(m−1))!
+ L7

n(3/4)γ−5/2
exp

(
ϕ(n)3/2t

)
.

(5.19)

Substituting (5.19) into (5.18) we have
∣∣∣vni (t)−vn−1

i (t)

∣∣∣�L6ϕ(n)
3

×
∫ t

0
ds

(
(L8ϕ(n))

3(m−1)+1 s2(m−1)

(2(m−1))!
+ L7

n(3/4)γ−5/2
exp(ϕ(n)3/2s)

)

+ L7

n(3/4)γ−5/2
(5.20)
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from which it follows that
∣∣∣vni (t)−vn−1

i (t)

∣∣∣ converges summably to zero as
n→∞.

To prove that the limit solution belongs to (2.15) for any time 0� t�
T , with T arbitrary but a priori fixed, let us fix i ∈N and choose k0 such
that k0 −1� |qi |�k0. We choose n∗ of the form

n∗ = [
k2

0 +L10
]
, (5.21)

in such a way that we have a uniform convergence of
∑
n�n∗ uk0(n, t) with

respect to k0 (as it appears evident from (5.15)). Now we have:

|vi(t)−vn∗
i (t)|�

∑

n�n∗
|vni (t)−vn−1

i (t)|, (5.22)

hence by (5.20) and by the choice made for n∗, the right hand side of
(5.22) is bounded by a constant indipendent from k0:

|vi(t)|� |vn∗
i (t)|+L11. (5.23)

Thus from (5.7) it follows

|vn∗
i (t)| � L12

(
log(e+n∗)

) 3
2 ξ �L13

(
log(e+k0)

) 3
2 ξ

� L14
(

log(e+|qi |)
) 3

2 ξ =L14ψ
3/2
ξ (|qi |), (5.24)

so that, from (5.24) and (5.23), it follows

|vi(t)|�L15ψ
3/2
ξ (|qi |). (5.25)

We want to prove now that, if X∈Xξ , then X(t)∈X 3
2 ξ

.

Given µ∈R
3 and R>(log(e+|µ|)) 3

2 ξ let

n0 =
[
L16 exp

(
2R

2
3ξ
)]
. (5.26)

Clearly (log(e+n0))
3
2 ξ �R so that, by Lemma 3.2 and from the relation

Q(X;µ,R)� L̃W(X;µ,R),
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(see (C.1)), we have

Q(Xn0(t);µ,R) � L̃W(Xn0(t);µ,2R(n0, t))�L17R
3(n0, t)

�L18(log(e+n0))
9
2 ξ �L19

(
R

2
3ξ
)9ξ

2 �L20R
3. (5.27)

On the other hand

Q(X(t);µ,R) � Q(Xn0(t);µ,R)
+
∑

n>n0

∣∣∣Q(Xn(t);µ,R)−Q(Xn−1(t);µ,R)
∣∣∣ (5.28)

and the sum on the r.h.s. of (5.28), by the choice (5.26) of n0 (which in
particular implies that n0> |µ|), converges uniformly with respect to µ∈
R

3 and R> (log(e+|µ|)) 3
2 ξ , so it is bounded by a constant independent

from µ and R.
Notice that the following inequalities hold

(log(e+n0))
3
2 ξ �R� (log(e+|µ|)) 3

2 ξ , (5.29)

in order that, combining (5.27) and (5.28), taking the supremum over µ∈
R

3 and over R>(log(e+|µ|)) 3
2 ξ , we obtain that X(t)∈X 3

2 ξ
.

We want to underline that we cannot say that the solution surely exits
from Xξ , we have only proved that the maximal set of existence for X(t)
is X 3

2 ξ
⊃Xξ .

For what concerns the uniqueness of the solution, let us assume that
there is a solution {q	i , v	i } different from the one obtained as the limit of
the partial dynamics and deduce a contradiction. In the space defined by
(2.14) and (2.15) it can be easily proved that the difference |qni −q	i | con-
verges to zero as n→∞ by an iterative method identical to the one just
used, in particular we need the restriction over the velocities provided by
(2.15) in order to make the iterative method work. This last condition on
the velocities is imposed by the long-range character of the interaction,
which gives origin to a term like the last present in (5.16).

We want to point out that the restriction (2.15) is a requirement
imposed to prove the uniqueness of the solution. In particular we need a
velocity bound (better than the one following by energy conservation) for
the non-limit (hypothetical) solution {q	i , v	i }, necessary to make the iter-
ative method work. Nevertheless we remark that we have proved that the
limit solution, limn→∞{qni , vni }, belongs directly to (2.15).

The proof of Theorem 2.1, dealing with the short-range interaction,
is analogous to Theorem 2.2’s, with obvious simplifications.



402 Cavallaro et al.

APPENDIX A

Proof of Lemma 3.1. We make a partition of the physical space
with large cubes of side mr and we divide the interaction into a short-
range and a long-range one. The last one can be handled using Proposi-
tion 2.1. Concerning the short-range interaction we choose the parameter
α in the definition of the weight-function f (see (2.24)) so small in such
a way that, in a cube, f is constant, and then, neglecting the interaction
with the other cubes, W is superstable. Of course the interaction between
different cubes exists, but it gives a surface effect, and it becomes negligi-
ble with respect to a volume effect, as m is very large.

Let us define the set �lu(r) in the following way

�lu(r) ≡ {x ∈R
3 :u(i)+ l(i)mr�x(i) <u(i)+ (l(i)+1)mr,

u∈R
3; m∈N, l ∈Z

3},

where r is the parameter appearing in Proposition 2.1.
From this definition, it follows that |x − y| � √

3mr, ∀x, y ∈ �lu(r),
then, by the properties of the weight-function

f (|y−µ|,R)�f (|x−µ|,R)
(

1+α
√

3mr
)λ
. (A.1)

We define also the following quantities:

f̂
µ,R
u,l ≡ inf

i∈N,qi∈�lu
f
µ,R
i , (A.2)

P lu(r) ≡ {(i, j)∈N⊗N : i >j, qi ∈�lu, qj ∈�lu, |qi −qj |<r}, (A.3)

Tu(r) ≡
⋃

l∈Z3

P lu(r), (A.4)

M ≡ sup
x∈R3

|φ(x)|, (A.5)

V (r) ≡ {(i, j)∈N⊗N : i >j, |qi −qj |<r}. (A.6)

As it follows from its definition, V (r) is the set of all the pairs of par-
ticles with relative distance smaller than r, while in Tu there are no pairs
with particles in two adjoining �lu.

Let ε be a real positive number such that

ε >
√

3αmr, (A.7)
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then for each x and y in �lu we have:

f (|y−µ|,R)� (
1+ ε)λf (|x−µ|,R). (A.8)

Since the potential can be decomposed into φ=φ(1)+φ(2) (see (2.17)), the
mollified energy becomes

W(X;µ,R)≡W(1)(X;µ,R)+W(2)(X;µ,R), (A.9)

where

W(1)(X;µ,R) ≡
∑

i∈N

f
µ,R
i

(v2
i

2
+ 1

2

∑

j :j �=i
φ
(1)
i,j +b

)
, (A.10)

W(2)(X;µ,R) ≡
∑

i∈N

f
µ,R
i

1
2

∑

j :j �=i
φ
(2)
i,j . (A.11)

Let us estimate now the second term W(2). For r large enough we
have:

|W(2)| � D̃1
(
1+

√
3α

)λ ∑

i∈Z3

f (|i−µ|,R)n�i

×
∑

j∈Z3

n�j
χ(|i− j |>r−2)

(|i− j |−√
3)
γ

� D̃2

∑

i∈Z3

∑

j∈Z3:
|i−j |>r−2

f (|i−µ|,R)n�in�j
1

|i− j |γ

� D̃3

∑

i∈Z3

∑

j∈Z3:
|i−j |>r−2

f (|i−µ|,R) (n2
�i

+n2
�j

) 1
|i− j |γ

� D̃4

{∑

i∈Z3

∑

j∈Z3:
|i−j |>r−2

f (|i−µ|,R)n2
�i

1
|i− j |γ

+
∑

i,j∈Z3:
|i−j |>r−2

f (|j −µ|,R)n2
�j

1
|i− j |γ (1+|i− j |)λ)

}
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� D̃5

∑

i∈Z3

f (|i−µ|,R)n2
�i

×
∞∑

k=r

∑

j∈Z3

χ(k� |j |<(k+1))
(1+k+1)λ

kγ

� D̃6

∑

i∈Z3

f (|i−µ|,R)n2
�i

∞∑

k=r

1
kγ−2−λ

� D̃7(r)
∑

i∈Z3

f (|i−µ|,R)n2
�i
, (A.12)

with D̃7(r) such that:

lim
r→+∞ D̃7(r)=0, (A.13)

as

γ >3+λ. (A.14)

Therefore ∃ r1>0 : ∀r >r1 ⇒ D̃7(r)� 1
4A, hence

W(2)�−1
4
A
∑

i∈Z3

f (|i−µ|,R)n2
�i

(A.15)

for any r >r1.
Now it remains to examine the first term W(1).

If we define the quantity

E(X;µ,�lu)=
∑

(i,j)∈P lu
f
µ,R
i φ

(1)
i,j , (A.16)

by the superstability of φ(1) we have

E(X;µ,�lu) =
∑

(i,j)∈P lu
(f

µ,R
i − f̂ µ,Ru,l )φ

(1)
i,j + f̂ µ,Ru,l

∑

(i,j)∈P lu
φ
(1)
i,j

� −M((1+ ε)λ−1)
∑

(i,j)∈P lu
f̂
µ,R
u,l −Bf̂ µ,Ru,l

∑

k∈Z3
u

n�k

+3
4
Af̂

µ,R
u,l

∑

k∈Z3
u

n2
�k
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and from the following definition

Z
3
u≡Z

3 ∩�lu (A.17)

we get

E(X;µ,�lu) � −B f̂ µ,Ru,l

∑

k∈Z3
u

n�k + 3A

4(1+ ε)λ
∑

k∈Z3
u

f (|k−µ|,R)n2
�k

−M
2
((1+ ε)λ−1)

∑

(i,j)∈P lu
(f

µ,R
i +f µ,Rj ). (A.18)

Choosing z=u, where z∈�0
0 ∩ rZ3, we have ∪l∈Z3�

l
z = R

3, and to each z

it is associated a partition Pz of the space.

For a fixed partition, considering the definition (2.23), summing
(A.16) over the sets �lz ∈Pz and taking into account all the contributions
of the pairs not belonging to a set of the partition, we finally obtain a
lower bound for the mollified energy. Indeed choosing b>B, we have:

W(1)(X;µ,R) �
∑

l∈Z3

E(X;µ,�lz)+b
∑

l∈Z3

f̂
µ,R
z,l n�l

−M
2

∑

(i,j)/∈Tz
(f

µ,R
i +f µ,Rj )

� 3A

4(1+ ε)λ
∑

k∈Z3

f (|k−µ|,R)n2
�k

−M
∑

(i,j)/∈Tz
(f

µ,R
i +f µ,Rj )

−M
2
((1+ ε)λ−1)

∑

(i,j)∈Tz
(f

µ,R
i +f µ,Rj )

� 3A

4(1+ ε)λ
∑

k∈Z3

f (|k−µ|,R)n2
�k

−M
∑

(i,j)/∈Tz
(f

µ,R
i +f µ,Rj )

−M
2
((1+ ε)λ−1)

∑

(i,j)∈V
(f

µ,R
i +f µ,Rj ). (A.19)

If we sum over z, the term in the left hand side is clearly independent
of z. On the contrary, given a pair of particles (i, j), the number of z such
that (i, j)∈Tz is larger than (m−2)3, thus the number of pairs of particles
with a relative distance smaller than r, but such that they do not belong
to Tz, is less than m3 − (m−2)3 �14m2.
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In this way we obtain

m3W(1)(X;µ,R) � 3Am3

4(1+ ε)λ
∑

k∈Z3

f (|k−µ|,R)n2
�k

−14Mm2
∑

(i,j)∈V
(f

µ,R
i +f µ,Rj )

−Mm3

2
((1+ ε)λ−1)

∑

(i,j)∈V
(f

µ,R
i +f µ,Rj ).

(A.20)

Let us estimate now the last two terms of the sum:

∑

(i,j)∈V
(f

µ,R
i +f µ,Rj ) �

∑

i<j

(f
µ,R
i +f µ,Rj )χ(|qi −qj |<r)

� D̃8

∑

i∈Z3

∑

l∈N:
ql∈�i

∑

j∈Z3:
|i−j |<r+2

∑

g∈N:qg∈�j
f (|i−µ|,R)

= D̃8

∑

i∈Z3

∑

j∈Z3:
|i−j |<r+2

f (|i−µ|,R)n�in�j .

Obviously for a fixed j

Card{i ∈Z
3 : |i− j |<r+2}� D̃9 r

3,

then, for r large enough:

∑

(i,j)∈V
(f

µ,R
i +f µ,Rj )� D̃10 r

3+λ ∑

i∈Z3

f (|i−µ|,R)n2
�i
. (A.21)

In conclusion the term W(1) is bounded by

W(1)(X;µ,R)�D(ε,m, r)
∑

i∈Z3

f (|i−µ|,R)n2
�i
, (A.22)

where

D(ε,m, r)≡
(

3A

4(1+ ε)λ − 14D̃10M

m
r3+λ−M

2
D̃10r

3+λ((1+ ε)λ−1)
)
.

(A.23)
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Let r be such that r >max{r̄ , r1}, and m such that:

m� m̄≡ 112D̃10Mr
3+λ

A
, (A.24)

and let ε satisfy the following bound:

ε�min

{
(
3/2

) 1
λ −1,

(
A

4MD̃10r
3+λ +1

) 1
λ

−1

}
, (A.25)

so that we have

D(ε,m, r)� 1
4
A. (A.26)

Finally we fix α in such a way that αmr
√

3<ε, so the thesis immediately
follows with C3 =1/4A.

Summing up, first we choose r so large that the tail term W2 is small
enough. Then, for a fixed r, m can be chosen in such a way that (A.24)
holds, and ε small enough to satisfy (A.25). Finally, as we have fixed
r,m, ε, from (A.7) the bound on α follows.

APPENDIX B

Proof of Corollary 3.1. The only part which remains to prove is:

∑

i∈N

f
µ,R
i




1
2

∑

j∈N:
j �=i

φi,j +b



�C4

∑

k∈Z3

f (|k−µ|,R)n2
�k
. (B.1)

Let us define

∑

i∈N

f
µ,R
i




1
2

∑

j∈N:
j �=i

φi,j +b



≡W(a)+W(b), (B.2)
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where

W(a) ≡
∑

i∈N

f
µ,R
i




1
2

∑

j∈N:
j �=i

φ
(1)
i,j +b



 , (B.3)

W(b) ≡ 1
2

∑

i∈N

f
µ,R
i

∑

j∈N:
j �=i

φ
(2)
i,j . (B.4)

Using the third property of Proposition 2.2, the first term can be easily
bounded by

W(a) � (1+α
√

3)
λ
Ẽ1

∑

l∈Z2

f (|l−µ|,R)n�l

+‖φ(1)‖∞
2

∑

i �=j
f
µ,R
i χ(|qi −qj |� r). (B.5)

Thus

W(a)� Ẽ2

∑

l∈Z3

f (|l−µ|,R)n2
�l

+ Ẽ3

∑

i �=j
f
µ,R
i χ(|qj −qj |� r). (B.6)

Let us give an upper bound for the second term that we denote with W̃ :

W̃ ≡
∑

i �=j
f
µ,R
i χ(|qj −qj |� r)

�
∑

l,m∈Z3

∑

i �=j
χi(�l)χj (�m)(1+α

√
3)
λ
f (|l−µ|,R)χ(|l−m|� r+

√
3)

� Ẽ4

∑

l∈Z3

∑

m∈Z3

f (|l−µ|,R)n�ln�mχ(|l−m|� r+
√

3)

� Ẽ4

2

∑

l∈Z3

∑

m∈Z3

f (|l−µ|,R) (n2
�l

+n2
�m
)χ(|l−m|� r+

√
3)

� Ẽ4

2

∑

l∈Z3

f (|l−µ|,R)n2
�l

∑

m∈Z3

χ(|l−m|� r+
√

3)

+ Ẽ4

2

∑

m∈Z3

f (|m−µ|,R)n2
�m

∑

l∈Z3

(1+α(r+
√

3))
λ
χ(|l−m|� r+

√
3)

� Ẽ5 r
3+λ ∑

l∈Z3

f (|l−µ|,R)n2
�l

� Ẽ6

∑

l∈Z3

f (|l−µ|,R)n2
�l
,
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where we denote with χi(�l) the characteristic function of the set {i ∈
N : qi ∈ �l} and with n�l the number of particles in the unit cube �l
with its center in l. Moreover we have used the fact that, for a fixed l,∑
m∈Z3 χ(|l −m| � r + √

3) is bounded by the cardinality of the set Z
3 ∩

B(0, r+√
3).

Thus for W(a) we have

W(a)� Ẽ7

∑

l∈Z3

f (|l−µ|,R)n2
�l
. (B.7)

Let us give a similar estimate for W(b).
From the forth property of (2.17) we have:

W(b) � Ẽ8

∑

i∈N

f
µ,R
i

∑

j∈N

χ(|qj −qj |� r) 1
|qi −qj |γ

= Ẽ8

∞∑

k=1

∑

i,j

f
µ,R
i χ(kr� |qi −qj |<(k+1)r)

1
|qi −qj |γ ,

thus

W(b) � Ẽ8

∞∑

k=1

1
(kr)γ

∑

l,m∈
Z3

∑

i,j∈
N

χi(�l)χj (�m)

×(1+α
√

3)
λ
f (|l−µ|,R) χ(kr−

√
3� |l−m|� (k+1)r+

√
3)

� Ẽ9

∞∑

k=1

1
(kr)γ

×
∑

l,m∈
Z3

f (|l−µ|,R)n�ln�mχ(kr−
√

3� |l−m|� (k+1)r+
√

3)

� Ẽ9

2

∞∑

k=1

1
(kr)γ

∑

l,m∈
Z3

(
f (|l−µ|,R)n2

�l
+f (|m−µ|,R)(1+α|l−m|)λn2

�m

)

×χ(kr−
√

3� |l−m|� (k+1)r+
√

3)

� Ẽ10

∞∑

k=1

k2r3

(kr)γ

∑

l∈Z3

f (|l−µ|,R)n2
�l
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+Ẽ11

∞∑

k=1

k2(1+α((k+1)r+√
3))

λ

(kr)γ

∑

m∈Z3

f (|m−µ|,R)n2
�m

� Ẽ12

∑

l∈Z3

f (|l−µ|,R)n2
�l
, (B.8)

where in the last inequality the convergence of the series follows from the
bound on γ .

Thus we have:

∑

i∈N

f
µ,R
i




1
2

∑

j∈N:
j �=i

φi,j +b



�C4

∑

l∈Z3

f (|l−µ|,R)n2
�l
, (B.9)

and then the proof easily follows.

APPENDIX C

Proof of Corollary 3.2. For the first inequality we prove a stronger
bound: there exists a positive constant L̃ such that:

Q(X;µ,R)� L̃W(X;µ,R). (C.1)

From definition (2.6) we can write:

Q(X;µ,R) =
∑

i∈N

χ(|qi −µ|�R)v
2
i

2

+
∑

i∈N

χ(|qi −µ|�R)
(
b+ 1

2

∑

j �=i:
qj ∈B(µ,R)

φ
(1)
i,j

)

+1
2

∑

i∈N

χ(|qi −µ|�R)
∑

j �=i:
qj ∈B(µ,R)

φ
(2)
i,j

≡ T +U(1)+U(2), (C.2)

where

T ≡
∑

i∈N

χ(|qi −µ|�R)v
2
i

2
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U(1) ≡
∑

i∈N

χ(|qi −µ|�R)
(
b+ 1

2

∑

j �=i:
qj ∈B(µ,R)

φ
(1)
i,j

)
,

U(2) ≡ 1
2

∑

i∈N

χ(|qi −µ|�R)
∑

j �=i:
qj ∈B(µ,R)

φ
(2)
i,j .

Because of the boundness of the weight-function f
µ,R
i and from the

positivity of the interaction energy (3.2), we have

T � L̃1

∑

i∈N

f
µ,R
i

v2
i

2
� L̃1W(X;µ,R), (C.3)

The second term can be easily bounded by

U(1)� L̃1

∑

i∈N

f
µ,R
i b+ 1

2

∑

i �=j
χ(|qi −µ|�R)χ(|qj −µ|�R) |φ(1)i,j |

� (1+α
√

3)
λ
L̃1

∑

l∈Z3

f (|l−µ|,R)n�l

+‖φ(1)‖∞
2

∑

i �=j
χ(|qi −µ|�R)χ(|qi −qj |� r), (C.4)

where for the first addendum we have used the third property of Proposi-
tion 2.2.

Thus

U(1)� L̃2

∑

l∈Z3

f (|l−µ|,R)n2
�l

+ L̃3

∑

i �=j
f
µ,R
i χ(|qj −qj |� r). (C.5)

Let us give an upper bound for the second term that we denote with Ũ

Ũ=
∑

i �=j
f
µ,R
i χ(|qj −qj |� r)�

∑

l,m∈Z3

∑

i �=j
χi(�l)χj (�m)(1+α

√
3)
λ

×f (|l−µ|,R)χ(|l−m|� r+
√

3)
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� L̃4

∑

l∈Z3

∑

m∈Z3

f (|l−µ|,R)n�ln�mχ(|l−m|� r+
√

3)

� L̃4

2

∑

l∈Z3

∑

m∈Z3

f (|l−µ|,R) (n2
�l

+n2
�m
)χ(|l−m|� r+

√
3)

� L̃4

2

∑

l∈Z3

f (|l−µ|,R)n2
�l

∑

m∈Z3

χ(|l−m|� r+
√

3)

+ L̃4

2

∑

m∈Z3

f (|m−µ|,R)n2
�m

∑

l∈Z3

(1+α(r+
√

3))
λ
χ(|l−m|� r+

√
3)

� L̃5 r
3+λ ∑

l∈Z3

f (|l−µ|,R)n2
�l

� L̃6

∑

l∈Z3

f (|l−µ|,R)n2
�l
,

where we denote with χi(�l) the characteristic function of the set {i ∈
N : qi ∈ �l} and with n�l the number of particles in the unit cube �l
with its center in l. Moreover we have used the fact that, for a fixed l,∑
m∈Z3 χ(|l −m| � r + √

3) is bounded by the cardinality of the set Z
3 ∩

B(0, r+√
3).

Thus for U(1) we have

U(1)� L̃7

∑

l∈Z3

f (|l−µ|,R)n2
�l
. (C.6)

Let us give a similar estimate for U(2).
From the forth property of (2.17) we have

U(2) � G1

∑

i∈N

∑

j∈N

χ(|qj −µ|�R)χ(|qj −qj |� r) 1
|qi −qj |γ

� L̃8

∑

i∈N

f
µ,R
i

∑

j∈N

χ(|qj −qj |� r) 1
|qi −qj |γ

� L̃8

kmax∑

k=1

∑

i,j

f
µ,R
i χ(kr� |qi −qj |� (k+1)r)

1
|qi −qj |γ ,

where kmax = [4/3π R3/r]+1, then:

U(2) � L̃8

kmax∑

k=1

1
(kr)γ

∑

l,m∈
Z3

∑

i,j∈
N

χi(�l)χj (�m)
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×(1+α
√

3)
λ
f (|l−µ|,R) χ(kr−

√
3� |l−m|� (k+1)r+

√
3)

� L̃9

kmax∑

k=1

1
(kr)γ

×
∑

l,m∈
Z3

f (|l−µ|,R)n�ln�mχ(kr−
√

3� |l−m|� (k+1)r+
√

3)

� L̃9

2

kmax∑

k=1

1
(kr)γ

∑

l,m∈
Z3

(
f (|l−µ|,R)n2

�l
+f (|m−µ|,R)(1+α|l−m|)λn2

�m

)

×χ(kr−
√

3� |l−m|� (k+1)r+
√

3)

� L̃10

∞∑

k=1

k2r3

(kr)γ

∑

l∈Z3

f (|l−µ|,R)n2
�l

+L̃11

∞∑

k=1

k2(1+α((k+1)r+√
3))

λ

(kr)γ

∑

m∈Z3

f (|m−µ|,R)n2
�m

� L̃12

∑

l∈Z3

f (|l−µ|,R)n2
�l
, (C.7)

where in the last inequality the convergence of the series follows from the
bound on γ .

Thus, from Lemma 3.1 we have

Q(X;µ,R)�T +U(1)+U(2)� L̃13W(X;µ,R),

and then the proof of the first inequality of the Corollary follows.
Let us consider the second one.
From the definition of Q(X;µ,R) and from the superstability of the

potential we have

Q(X;µ,R)�A
∑

k∈Z3:
|k−µ|<R

n2
�k

� L̃14

∑

k∈Z3:
|k−µ|<R

f (|k−µ|,R)n2
�k
, (C.8)

and from Corollary 3.1:

W(X;µ,R) � C4

∑

i∈Z3:

f (|i−µ|,R)n2
�i

+
∑

i∈N

f
µ,R
i

v2
i

2

� C4

∑

k�0

∑

i∈Z3:
i∈B(µ,(k+1)R)\B(µ,kR)

f (|i−µ|,R)n2
�i
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+
∑

k�0

∑

i∈N

χ(kR� |qi −µ|<(k+1)R) f µ,Ri

v2
i

2

� L̃15

∑

k�1

1
kλ

∑

i∈Z3:
i∈B(µ,(k+1)R)

n2
�i

+L̃16

∑

k�0

1

(1+k)λ Q(X;µ, (k+1)R)

� L̃17R
3
∑

k�1

1
kλ−3

Q(X;µ, (k+1)R)

((k+1)R)3
.

Dividing by R3

W(X;µ,R)
R3

� L̃17

∑

k�1

1
kλ−3

Q(X;µ, (k+1)R)

((k+1)R)3
,

from which, taking the supremum over µ∈R
3 and over R>ψξ(|µ|)

sup
µ

sup
R>ψξ (|µ|)

W(X;µ,R)
R3

� L̃18Qξ

∑

k�1

1
kλ−3

� L̃19Qξ, (C.9)

being λ>4.

APPENDIX D

Proof of Lemma 3.3. (i) Since

1

(1+α |y|
nR
)
λ

� nλ

(1+α |y|
R
)
λ

then, from the first two properties of Proposition 2.2, ∃ L̃20>0 such that

f
µ,nR
i � L̃20 n

λ f
µ,R
i .

By Corollary 3.1 it follows that

W(X;µ,nR)�
∑

i∈N

f
µ,nR
i

v2
i

2
+C4

∑

k∈Z3

f (|k−µ|, nR)n2
�k

� L̃20 n
λW(X;µ,R)
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+C4 L̃20n
λ
∑

k∈Z3

f (|k−µ|,R)n2
�k

�C8 n
λW(X;µ,R).

(ii) From the definition of the weight-function we have f (x,R1)<f (x,R2),
if R1<R2.

Using again Corollary 3.1 we get

W(X;µ,R) � C4

∑

k∈Z3

f (|k−µ|,R)n2
�k

+
∑

i∈N

f
µ,R
i

v2
i

2

� C4

∑

k∈Z3

f (|k−µ|, nR)n2
�k

+W(X;µ,nR)

� C9W(X;µ,nR).

(iii) We use the superstability of the interaction and the bound (C.1):

W(X;µ,R) � 1

L̃
Q(X;µ,R)

� 1

2L̃

∑

i,j

χ(|qi −µ|�R)χ(|qj −µ|�R)φi,j

� L̃21

R3
N2(X,µ,R)−B 1

2L̃
N(X,µ,R).

Since the interaction energy is positive:

N2(X,µ,R)� L̃22R
3 (N(X,µ,R)+W(X;µ,R) )� L̃23R

3W(X;µ,R).

(iv) Let us cover the ball B(µ,R) by a collection of disjoint cubes
{�α}α∈Z3 of side one. Therefore

∑

i �=j
χ(|qi −qj |<ρ)χ(|qi −µ|<R)χ(|qj −µ|<R)�

∑

(α,β)

n�α n�β +
∑

α

n2
�α
,

(D.1)

where (α,β) means the sum restricted to all pairs of different cubes at dis-
tance not larger than ρ. Thus we have the bound:
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∑

i �=j
χ(|qi −qj |<ρ)χ(|qi −µ|<R)χ(|qj −µ|<R)

�
∑

α

n2
�α

+ 1
2

∑

(α,β)

(
n2
�α

+n2
�β

)
� L̃24 ρ

3
∑

α

n2
�α

� L̃25 ρ
3
∑

i∈Z3

f (|i−µ|,R)n2
�i

� L̃26 ρ
3W(X;µ,R). (D.2)
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